Características Físicas
Diâmetro médio 1,392×109 m (109 × Terra)
Densidade média 408 × 103 kg/m
Gravidade na superfície 274,0 m/s
Temperatura da superfície 5 778 ºK
Temperatura coroa ~5×106 ºK
Temperatura núcleo ~15,7 × 106 ºK
Período de rotação 25d 9h 7min 13s
Velocidade de rotação 7,189×103 km/h
Hidrogênio | 73,46% |
Hélio | 24,85% |
Oxigênio | 0,77% |
Carbono | 0,29% |
Ferro | 0,16% |
Enxofre | 0,12% |
Néon | 0,12% |
Nitrogênio | 0,09% |
Silício | 0,07% |
Magnésio | 0,05% |
O Sol (do latim sol, solis) é a estrela central do Sistema Solar. Todos os outros corpos do Sistema Solar, como planetas, planetas anões, asteroides, cometas e poeira, bem como todos os satélites associados a estes corpos, giram ao seu redor. Responsável por 99,86% da massa do Sistema Solar, o Sol possui uma massa 332 900 vezes maior que a da Terra, e um volume 1 300 000 vezes maior que o do nosso planeta.
A distância da Terra ao Sol é de cerca de 150 milhões de quilômetros, ou 1 unidade astronômica (UA). Na verdade, esta distância varia com o ano, de um mínimo de 147,1 milhões de quilômetros (0,9833 UA) no periélio (Em astronomia, o periélio é o ponto da órbita de um corpo, seja ele planeta, planeta anão, asteroide ou cometa, que está mais próximo do Sol) a um máximo de 152,1 milhões de quilômetros (1,017 UA) no afélio(afélio é o ponto da órbita em que um planeta ou um corpo menor do sistema solar está mais afastado do Sol), em torno de 4 de julho. A luz solar demora aproximadamente 8 minutos e 18 segundos para chegar à Terra. Energia do Sol na forma de luz solar é armazenada em glicose por organismos vivos através da fotossíntese, processo do qual, direta ou indiretamente, dependem todos os seres vivos que habitam nosso planeta. A energia do Sol também é responsável pelos fenômenos meteorológicos e o clima na Terra.
É composto primariamente de hidrogênio (74% de sua massa, ou 92% de seu volume) e hélio (24% da massa solar, 7% do volume solar), com traços de outros elementos, incluindo ferro, níquel, oxigênio, silício, enxofre, magnésio, néon, cálcio e crômio.
Possui a classe espectral de G2V: G2 indica que a estrela possui uma temperatura de superfície de aproximadamente 5780 K, o que lhe confere uma cor branca (apesar de ser visto como amarelo no céu terrestre, o que se deve à dispersão dos raios na atmosfera); O V (5 em números romanos) na classe espectral indica que o Sol, como a maioria das estrelas, faz parte da sequência principal. Isto significa que o astro gera sua energia através da fusão de núcleos de hidrogênio para a formação de hélio. Existem mais de 100 milhões de estrelas da classe G2 na Via Láctea. Considerado anteriormente uma estrela pequena, acredita-se atualmente que o Sol seja mais brilhante do que 85% das estrelas da Via Láctea, sendo a maioria dessas anãs vermelhas.
Classificação espectral de Harvard |
A coroa solar expande-se continuamente no espaço, criando o vento solar, uma corrente de partículas carregadas que estende-se até a heliopausa, a cerca de 100 UA do Sol. A bolha no meio interestelar formada pelo vento solar, a heliosfera, é a maior estrutura contínua do Sistema Solar.
Estrutura Solar
O Sol, tal como outras estrelas, é uma esfera de plasma que se encontra em sua sequência principal que contém cerca de 99,86% da massa do Sistema Solar. É uma esfera quase perfeita, com um achatamento de apenas nove milionésimos,. Como o Sol é uma esfera de plasma, e não é sólido, gira mais rápido em torno de si mesmo no seu equador do que em seus pólos. Porém a rotação aparente do Sol é de 28 dias.
O Sol não possui uma superfície definida como planetas rochosos possuem, e, nas partes exteriores, a densidade dos gases cai aproximadamente exponencialmente à medida que se vai afastando do centro. Mesmo assim, seu interior é bem definido. O raio do Sol é medido do centro solar até o limite da fotosfera. Esta última é simplesmente uma camada acima do qual gases são frios ou pouco densos demais para radiar luz em quantidades significativas, sendo, portanto, a superfície mais facilmente identificável a olho nu.
O interior solar possui três regiões diferentes: o núcleo, onde se produzem as reações nucleares que transformam a massa em energia através da fusão nuclear, a zona radiativa e a zona de convecção. O interior do Sol não é diretamente observável, já que a radiação é completamente absorvida (e reemitida) pelo plasma do interior solar, e o Sol em si mesmo é opaco à radiação electromagnética. Porém, da mesma maneira que a sismologia utiliza ondas geradas por terremotos para revelar o interior da Terra, a heliosismologia utiliza ondas de pressão (infravermelho) atravessando o interior do Sol para medir e visualizar o interior da estrutura solar. Modelos de computador também são utilizados como instrumentos teóricos para investigar camadas mais profundas do Sol.
Núcleo do Sol
Acredita-se que o núcleo do Sol estende-se do centro solar até 0,2 a 0,25 raios solares. O centro do Sol possui uma densidade de até 150 g/cm³, 150 vezes a densidade da água na Terra, e uma temperatura de cerca de 13 600 000 K. Análises recentes da missão SOHO indicam que a rotação do núcleo solar é mais rápida que a do restante da zona de radiação. Atualmente, e durante grande tempo da vida solar, a maior parte da energia produzida pelo Sol é gerada por fusão nuclear via cadeia próton-próton, convertendo hidrogênio em hélio. Menos de 2% do hélio gerado no Sol provém do ciclo CNO. O núcleo solar é a única parte do Sol que produz energia em quantidade significativa via fusão. O restante do Sol é aquecido pela energia transferida do núcleo para as regiões externas. Toda a energia produzida pela fusão precisa passar por várias camadas até a fotosfera antes de escapar para o espaço como luz solar ou energia cinética de partículas.
Composição Química
O Sol é composto primariamente dos elementos químicos hidrogênio e hélio; estes compõem 74,9% e 23,8%, respectivamente, da massa do Sol na fotosfera. Todos os elementos mais pesados, chamados coletivamente de metais na astronomia, compõem menos de 2% da massa solar. Os elementos químicos mais abundantes são oxigênio(compondo cerca de 1% da massa do Sol), carbono (0,3%), néon (0,2%), e ferro (0,2%).
O Sol herdou sua composição química do meio interestelar do qual foi formado: o hidrogênio e o hélio foram produzidos na nucleossíntese do Big Bang, enquanto que os metais foram produzidos por nucleossíntese estelar em gerações de estrelas que completaram sua evolução estelar, e retornaram seus materiais para o meio interestelar antes da formação do Sol. A composição química da fotosfera é normalmente considerada representativa da composição do Sistema Solar primordial. Porém, desde que o Sol foi formado, o hélio e os metais presentes nas camadas externas gradualmente afundaram em direção ao centro. Portanto, a fotosfera presentemente contém um pouco menos de hélio e apenas 84% dos metais que o Sol protoestrelar tinha; este era composto de 71,1% hidrogênio, 27,4% hélio, e 1,5% metais, em massa.
Fusão nuclear no núcleo do Sol modificou a composição química do interior solar. Atualmente, o núcleo do Sol é composto em 60% por hélio, com a abundância de metais não modificados. Visto que o interior do Sol é radiativo e não convectivo, o hélio e outros produtos gerados pela fusão nuclear não subiram para camadas superiores.
As abundâncias dos metais descritas acima são tipicamente medidas utilizando espectroscopia da fotosfera do Sol, e de medidas da abundância destes metais em meteoritos que nunca foram aquecidos a temperaturas acima do ponto de fusão. Acredita-se que estes meteoritos retenham a composição do Sol proto-estelar, e portanto, não sejam afetados pelo afundamento dos elementos mais pesados.
Campo Magnético
O Sol é uma estrela magneticamente ativa, suportando um forte campo magnético, cujas condições mudam constantemente, variando de ano para ano e revertendo-se em direção aproximadamente a cada 11 anos, em torno do máximo solar. O campo magnético do Sol gera vários efeitos que são chamados coletivamente de atividade solar. Estes incluem as manchas solares na superfície do Sol, as erupções solares e as variações no vento solar. Efeitos da atividade solar na Terra incluem auroras em médias a altas latitudes, a disrupção de comunicação de rádio e potência elétrica. Acredita-se que a atividade solar tenha tido um importante papel na formação e evolução do Sistema Solar. A atividade solar constantemente muda a estrutura da ionosfera terrestre.
Toda a matéria no Sol está presente na forma de gás e plasma, devido à sua alta temperatura. Isto torna possível rotação diferencial, com o Sol girando mais rápido no seu equador (onde o período de rotação é de 25 dias) do que em latitudes mais altas (com o período de rotação solar sendo de 35 dias nos pólos solares). A rotação diferencial do Sol faz com que as linhas do campo magnético entortem com o tempo, provocando a erupção de anéis coronais em sua superfície, a formação de manchas solares e de proeminências solares, via reconexão magnética. Este entortamento gera o dínamo solar e o ciclo solar de atividade magnética, que repete-se a cada 11 anos, visto que o campo magnético solar reverte-se a cada 11 anos.
O campo magnético solar estende-se bem além do Sol. O plasma magnetizado do vento solar transporta o campo magnético solar no espaço, formando o campo magnético interplanetário. Visto que o plasma pode se mover apenas nas linhas do campo magnético, as linhas do campo magnético interplanetário inicialmente esticam-se radialmente do Sol. Uma camada fina de correntes difusas no plano equatorial solar existe pois campos acima e abaixo do equador solar possuem polaridades diferentes. Esta camada é chamada de corrente heliosférica difusa. À medida que a distância do Sol aumenta, a rotação solar entorta as linhas do campo magnético e a corrente difusa, formando uma estrutura similar a uma espiral de Arquimedes, chamada de espiral de Parker. O campo magnético interplanetário é muito mais forte do que o componente dipolar do campo magnético solar. Enquanto que a última possui 50 a 400 T na fotosfera, reduzindo com o cubo da distância para 0,1 T na órbita terrestre, o campo magnético interplanetário na órbita terrestre é 100 vezes maior, com cerca de 5 T.
Manchas Solares
Quando o Sol é observado com os filtros apropriados, as características mais imediatamente visíveis são geralmente suas manchas, áreas bem definidas na superfície solar que aparentam ser mais escuras do que a região ao seu redor pelo fato de possuírem temperaturas mais baixas. Manchas solares são regiões de intensa atividade magnética onde convecção é inibida por fortes campos magnéticos, reduzindo transporte de energia do interior quente do Sol, fazendo que estas regiões possuam uma temperatura mais baixa do que ao redor. O campo magnético gera intenso aquecimento da coroa solar, formando regiões ativas que são as fontes de erupções solares e ejeção de massa coronal. As maiores manchas solares podem possuir dezenas de quilômetros de diâmetro.
O número de manchas solares visíveis no Sol não é constante, mas varia ao longo de um ciclo de 11 anos chamado de ciclo solar. No início do ciclo solar (no chamado período de atividade mínima), poucas manchas são visíveis, e por vezes nenhuma é vista. Estas que aparecem estão em altas latitudes solares. À medida que o ciclo solar continua, o número de manchas aumenta, e as manchas movem-se em direção ao equador solar, um fenômeno descrito pela lei de Spörer. Manchas solares geralmente ocorrem em pares, de polaridades opostas. A polaridade magnética dos pares alternam-se a cada ciclo solar (relativo à posição do par), tendo um pólo magnético norte em um ciclo e sul no próximo (e vice-versa na outra mancha).
O ciclo solar possui grande influência na meteorologia do espaço, e influencia significantemente o clima na Terra, visto que a luminosidade solar está diretamente relacionada à atividade magnética do Sol. Quando o Sol está no período de atividade mínima, costuma-se registrar temperaturas médias mais baixas do que o normal na Terra. Por outro lado, temperaturas médias mais altas do que o normal estão correlacionadas com ciclos solares mais longos que o geral. No século XVII, o ciclo solar aparentemente parou por completo por várias décadas, visto que poucas manchas solares foram observadas durante este período. A Europa experenciou temperaturas muito baixas durante este século, fenômeno que foi denominado mínimo de Maunder ou Pequena Idade do Gelo. Períodos estendidos de atividade mínima mais antigos foram descobertos através da análise de anéis de árvores, também aparentemente coincidindo com temperaturas globais mais baixas do que o normal.
Estudos de heliosismologia executados a partir de sondas espaciais permitiram observar certas "vibrações solares", cuja freqüência cresce com o aumento da atividade solar, acompanhando o ciclo de 11 anos de erupções. A cada 22 anos existe a manifestação do chamado hemisfério dominador, além da movimentação das estruturas magnéticas em direção aos pólos, que resulta em dois ciclos de 18 anos com incremento da atividade geomagnética da Terra e da oscilação da temperatura do plasma ionosférico na estratosfera da atmosfera terrestre.
Luz Solar
A luz solar é a principal fonte de energia da Terra. A constante solar é a quantidade de potência que o Sol deposita por unidade de área diretamente exposta para luz solar. A constante solar é igual a aproximadamente 1 368 W/m² a 1 UA do Sol, ou seja, na ou próxima à órbita da Terra, sendo que o planeta recebe por segundo 50 000 000 GW. Porém, a luz solar na superfície da Terra é atenuada pela atmosfera terrestre, diminuindo a potência por unidade de área recebida na superfície para aproximadamente 1000 W/m² no zênite, em um céu claro. A energia solar pode ser coletada através de uma variedade de processos sintéticos e naturais.
A luz solar é indispensável para a manutenção de vida na Terra, sendo responsável pela manutenção de água no estado líquido, condição indispensável para permitir vida como se conhece, e, através de fotossíntese em certos organismos (utilizando água e dióxido de carbono), produz o oxigênio (O2) necessário para a manutenção da vida nos organismos dependentes deste elemento e compostos orgânicos mais complexos (como glucose) que são utilizados por tais organismos, bem como outros que alimentam-se dos primeiros. A energia solar também pode ser capturada através de células solares, para a produção de eletricidade ou efetuar outras tarefas úteis (como aquecimento). Mesmo combustíveis fósseis tais como petróleo foram produzidos via luz solar — a energia existente nestes combustíveis foi originalmente convertida de energia solar via fotossíntese, em um passado distante.
Na antiguidade
O conhecimento mais fundamental da humanidade sobre o Sol é esta como um disco luminoso no céu, cuja presença acima do horizonte cria o dia, e sua ausência cria a noite. Várias culturas pre-históricas e antigas acreditavam que o Sol era uma deidade solar, ou outro fenômeno sobrenatural. O veneramento do Sol foi um aspecto central de civilizações
como os Incas da América do Sul e os Aztecas no atual México. Vários monumentos antigos foram construídos com fenômenos solares em mente; por exemplo, monumentos megalíticos podem ser encontrados em Nabta Playa (no Egito), em Mnajdra (em Malta) e em Stonehenge (no Reino Unido). Newgrange, um monte pre-histórico construído na Irlanda, foi construído para detectar o solstício de inverno; a pirâmide de Templo de Kukulcán, em Chichén Itzá(no México), foi desenhada para lançar sombras com o formato de serpentes subindo a pirâmide, nos equinócios de primavera e outono.
Deus Sol do povo Inca |
Durante a era do Império Romano, o aniversário do Sol era um feriado celebrado como Sol Invictus ("Sol não-conquistado"), logo após o solstício de inverno, pode ter sido um antecedente do Natal. Com respeito a estrelas fixas, o Sol, relativo à Terra, aparenta girar uma vez por ano em torno da eclíptica, pelo zodíaco, fazendo com que astrônomos gregos considerassem o Sol como um dos sete planetas (do grego planetes, que significa "perambulador"), etimologia explicando o nome dos sete dias da semana em vários idiomas.
Evolução solar
O Sol formou-se cerca de 4,57 bilhões (4,567 mil milhões) de anos atrás quando uma nuvem molecular entrou em colapso. Evolução estelar é medida em duas maneiras: através da presente idade da sequência principal do Sol, que é determinada através de modelagens computacionais de evolução estelar; e nucleocosmocronologia. A idade medida através destes procedimentos está de acordo com a idade radiométrica do material mais antigo encontrado no Sistema Solar, que possui 4,567 bilhões (4,567 mil milhões) de anos.
O Sol está aproximadamente na metade da sequência principal, período onde o qual fusão nuclear fusiona hidrogênio em hélio. A cada segundo, mais de 4 milhões de toneladas de matéria são convertidas em energia dentro do centro solar, produzindo neutrinos e radiação solar. Nesta velocidade, o Sol converteu cerca de 100 massas terrestres de massa em energia, desde sua formação até o presente. O Sol ficará na sequência principal por cerca de 10 bilhões (10 mil milhões) de anos.
Em cerca de 5 bilhões (5 mil milhões) de anos, o hidrogênio no núcleo solar esgotará. Quando isto ocorrer, o Sol entrará em contração devido à sua própria gravidade, elevando a temperatura do núcleo solar até 100 milhões de kelvins, suficiente para iniciar a fusão nuclear do hélio, produzindo carbono, entrando na fase do ramo gigante assimptótico
O destino da Terra é precário. Como uma gigante vermelha, o Sol terá um raio máximo maior de 250 UA, maior do que a órbita atual da Terra. Porém, quando o Sol tornar-se uma gigante vermelha, a estrela terá perdido cerca de 30% de sua massa atual, devido à massa perdida no vento solar, com os planetas afastando-se gradualmente do Sol, à medida que o Sol perde massa. Este fator por si mesmo provavelmente seria o suficiente para permitir que a Terra não fosse engolida pelo Sol, visto que a Terra afastar-se-ia o suficiente da estrela, mas pesquisas recentes mostram que a Terra será engolida pelo Sol devido à forças de maré.
Mesmo que a Terra não seja incinerada pelo Sol, a água do planeta evaporará, e a maior parte de sua atmosfera escapará para o espaço. De fato, o Sol gradualmente torna-se mais brilhante com o passar do tempo, mesmo na sequência principal (10% a cada 1 000 000 000 anos), com sua temperatura de superfície gradualmente aumentando com o tempo. O Sol foi no passado menos brilhante, sendo que no início possuía 75% da luminosidade atual, uma possível razão pela qual vida em terra firme somente existiu nos últimos 1 000 000 000 anos. Em outros 1 000 000 000 anos, o aumento da temperatura fará com que a superfície da Terra torne-se quente demais para possibilitar a existência de água líquida, e portanto, impossibilitará vida na Terra em sua forma atual.
A fusão de hélio sustentará o Sol por cerca de 100 milhões de anos, quando então o hélio no núcleo solar esgotará. O Sol não possui massa o suficiente para converter carbono em oxigênio, e portanto, não explodirá como uma supernova. Ao invés disso, após o término da fusão de hélio, intensas pulsações térmicas farão com que o Sol ejete suas camadas exteriores, formando uma nebulosa planetária. O único objeto que permanecerá após a ejeção será o extremamente quente núcleo solar, que resfriará gradualmente, permanecendo como uma anã branca com metade da massa atual (com o diâmetro da Terra) por bilhões (mil milhões) de anos. Este cenário de evolução estelar é típico de estrelas de massa moderada e baixa.
Nenhum comentário:
Postar um comentário